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ABSTRACT

This document provides the final report for Contract Number

N00167-82-C-0023, "Applications of an Improved Wave Drag Prediction tethod."
The method is based on a modified supersonic linear theory computer technique

developed in this contract and two earlier contracts, NU0167-78-C-0005 and

.400167-79-C-0123, all of which were jointly funded by DTNSRDC and AASA/Langley
Research Center. The modified linear theory differs from ordinary linear

theory in that it uses the exact boundary condition, it uses the local
perturbed velocity to calculate a =/M2 -l, it uses the exact pressure

coeffficient equation, and it uses characteristic tracing to determine regions
of influence. The theoretical and numerical techniques are described in

detail. A computer user's maanual is included which provides a detailed
description of the inputs and outputs of the computer routine, including
recomended guidelines for preparing the geometric input. Comparisons between
predictions of drag or pressures using the modified linear theory are made for

five cases with wind tunnel data or other theories. These comparisons verify

the improved accuracy of the nodified linear theory relative to ordinary

linear theory, particularly for high ,lach numbers and nigh surface slopes.
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IMPROVED WAVE DRAG PREDICTIONS USING MODIFIED LINEAR THEORY

1.0 INTRODUCTION

Supersonic linearized theory, including the special cases of slender body
theory and area rule, have well known limitations. While linear theory does
remarkably well in predicting lift and pitching moment, it does not do as well
in predicting drag. The largest discrepancies occur when the sweep angle is
nearly equal to the Mach angle (cos-ll/I1). Inaccurate prediction results
because drag is the integral of pressure times local slope, and the largest
errors in predicted pressure are likely to occur where the slopes are
largest. Van Dyke's second-order method gives much improved accuracy relative
to slender-body or linear theory results for two-dimensional flow, either
planar or axisymmetric, but a method for extending it to three dimensions has
not been found. For aircraft configurations, analytical methods for
predicting drag more accurately than area rule have not been found, short of
the very complex "exact" solutions such as method of characteristics,
time-dependent equations of motion, or relaxation techniques. These exact
methods require large amounts of computer time and are often sensitive to
input data smoothness, choice of arbitrary parameters, etc. These techniques
are not ideal for preliminary design, where many answers are required
quickly. Preliminary design requires a method which approximates linear
theory in complexity and approaches the exact solutions in accuracy. The
modified linear theory technique has been developed to provide an efficient,
accurate method.

The analytical and numerical techniques used in the modified linear theory
analysis routine are described. Calculations for several cases are compared
with wind tunnel data or other theoretical methods. A computer user's manual
is included as Appendix B.

2.0 LINEAR THEORY PERTURBATION RELATIONS

Eecause line distributions of sources and sinks are inadequate for a
general three-dimensional solution, all calculations described in this paper
utilize surface distributions of sources and sinks. The velocity potential
equation is

Vo -"V, . . , . .( ,

where S is the souce strength, ds = /L , ' on the surface of the
body, and the integral is taken over that portion of the surface included in
the Mlach forecone from the pnint x,y,z. Now, under certain nonrestrictive
conditions, the perturbation velocity components can be derived to be of the
form . - ' , . - .

-- __. " - i

doe~

c vI. ,'3 '
"  

-

. . . -



where e is the local slope, vn is the perturbation component perpendicular
to the freestream and normal to v and v is the perturbation component
perpendicular to the freestream a parallel to the local surface. The
functions F, G, and H are dependent on the value of B , the limits of
integration, the geometry of the model, and the functions used to describe the
variations of source strength in the y, z directions.

3.0 MODIFICATIONS TU LINEAR THEORY

The accuracy of the current method results from the combined effects of
the exact boundary condition, and use of the local (perturbed) value of

= - ; The exact pressure coefficient equation is also used.

The exact boundary condition (Fig. 1) requires not only the use of the
perturbed streamwise velocity component but also the determination of the
surface slope (W) in the plane defined by the freestream velocity vector and
the nonial to local surface. This three-dimensional determination of the
slope and the velocity component boundary conditions is necessary even in
quasiplanar cases, such as for wings.

The primary effect of the local e (Fig. 2) is on tne constant of
proportionality, I/s. The i/B factor appears in every term but one on tile
right side of Eqs. (2-4). Thus, it has a direct effect on each of the
perturbation velocities. As the local ,,lach nu;,iber approaches 1.u, the value
of 1/a approaches infinity. This is obviously an undesirable result.
Therefore, a correlated local Mach or 6 has been developed based on
calculations for two-dimensional ramps and cones. The correlation puts a
limit on the maximiui value of 1/a and causes the correlated value to approach
the limiit more slowly than with the exact equation. The effect of local 3 on
the region of influence characteristic directions) is less pronounced,
particularly for two-dimensional cases, either planar or axisyrmetric.
However, for three-dii;iensional flow the variations in propagation direction
can be important because of the lateral or longitudinal displacemient of
interference effects. Region of influence effects will be discussed further
below.

The two modifications have opposite effects. For cor.lpressions, the exact
tangency condition tends to reduce the magnitude of the perturbations because
(I + 0. /V0 ) is less than unity, and the required nonial velocity vn is
less than with the linearized boundary condition. But the local B in Eqs.
(2-4) tends to increase the perturbations values because, when M is sinaller
than the freestream value, 1/B is larger. Conversely, for expansions, (1+ @,
/Vo) > 1, and the required vnl is larger than the linearized values, but
i/B is saller than the freestream value.

Theoretical pressures predicted by the modified method are co,pared with
exact theory and linearized theory for 45-deg swept ramps (Fig. 3). The
modified linear theory shows greatly improved correlation with exact theory
relative to ordinary linear theory for both expansions and compressions.
Also, where the lineary theory predicts infinite perturbations at sonic edge
conditions for the swept raiIp in Fig. 3 (No = J-2), the modified theory on
the expansion side shows no tendency toward infinity. Use of tne local 3
eliminates expansion singularities because I/B approaches zero witn finite

pcsitive perturbations. On the compression side, the exact and modified
theories cannot be coi.iputed at Mo  /2 for tnis two-dimensional case
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because the flow could not actually remain two-dimensional. However, it can
be seen that the modified theory will not predict infinite perturbations here
either, because as 0,/V,-- -1, exact boundary conditions cause vn and the
source strength to approach zero. Thus, an equilibrium must be reached with
the value of 9/V between 0 and -1.0.

4.0 ANALYTICAL AND 14UMERICAL TECHNIQUES

An important numerical technique which allows the efficient evaluation of
the perturbation velocity integrals in Eqs. (2) - (4) is the use of Simpson's
Rule combined with stepping off from every integration limit by 0.07 times the
step size. For example, the exact value of the integral

0

is = 3.1416. Even though there is a square root singularity at both limits,
a two step (miniiiimn) Simpson's Rule integration with the 0.07 offset gives

o 7

which is accurate to D.2"'. The 0.07 offset is used at all times. Thus, no
special treatmAent is requireu for singularities, and the offset is srmall
enough that its effect on non-singular integrands is negligible. This
technique was derived by the author for the square root and logarithmic
singularities which frequently occur in linearized aerodynamic theory.

A brief discussion of the reasons for choosing the format of Eqs. (1) -
(4) is in order. First, source distributions are used rather than higher
order singularities because they are simpler, and because they are adequate to
describe the flow around bodies with thickness except possibly at thin
trailing, side or subsonic leading edges where the upper and lower surface
pressures are not equal. The assumed source strengths vary linearly in both
directions on a panel and are continuous across panel boundaries unless the
slope is discontinuous. This continuity of source strengths and the fact that
the panels can be curved in both directions allows the use of larger (i.e.,
fewer) panels to describe a configuration than would otherwise be possible.

Second, the form of Eqs. (2) - (4) was chosen for the following reasons.
The velocity components must be obtained from derivatives of the potential
function. The double integral in the potential equation cannot readily be
evaluated analytically and at least one integration must be perforTled
numerically. Numerically evaluated derivatives are highly unreliable,
particularly for the derivative of a numerically evaluated integral. A much
,ore reliable, accurate and efficient method is to perform one integration
analytically, differentiate analytically for the three velocity components,
and then perform the remaining integration numerically for each velocity

3



component. Having selected this method, the question remains of which
integration to perform analytically, the streamwise or lateral? Both options
were examined. It was found that analytically integrating laterally gave a
simpler integrand with fewer singularities and was much more compatible with
the translations required for characteristic tracing. The derivations of Eqs.
(2) - (4) for laterally curved and flat panels are in Appendix A.

Because the perturbation velocities are strong functions of the local
S= f 2 _ / , and the local a is a function of the perturbed
velocity, aq iteration is required. For the first pass, a rough estimate of
the perturbation velocities and s is made, based on the local slopes. This
provides faster convergence than using freestream s as the first guess. A

marching solution scheme is used. The iteration is performed at the front of
the configuration, then at the mid-points of the first row and then at the aft
end of the first row. At the front of succeeding rows, values of so *e
strength and s from the aft end of the first row are used with intei ,otion
as needed if the slopes are continuous. If slopes are not continuoi icross
the row, two-dimensional or conical solutions are iterated upon. T , 'he
solution is stepped back to the mid-points of each row, etc. This p !ss
makes the iterations more stable, as points on the back rows are no, --urbed
by variations in local a and source strength on preceding rows.

Variations in panelling techniques were investigated and two significant
effects were found: lateral curvature and continuity between panels. Tile
panel edges must be defined identically from one panel to the next to avoid
differences in and/or negative square roots in the hyperbolic radius

calculations. Differences in the hyperbolic radius values, particularly if
near the singularity or zero value, can cause large errors in the intejrdnu
because the net effect of all the panels is a swall differences of large
numbers. The following conclusions regarding curvature effects are based on
the foriat of Eqs. (2) - (4) and miyht be different if, for examiple, the
streariwise integration were perfon.ied analytically. Longituainal curvature is
not important; i.e., if the exact value of slope is used in the boundary
condition and no gaps are artificially introduced, the exact ordinate or
streanwise curvature has a negligible effect. Lateral curvature is important,
however. In the vicinity of the receiving point and along the
characteristics, it is necessary to use the curved panel solution frou
Appendix A. Each panel is approximated by a circular arc segment. The
curvature effect is used for at least two full panel widths away fro, each
characteristic. However, when xj < X*, the flat panel analysis is entirely
adequate. X* is defined as the st-reamwise location where the complete circle
corresponding to the circular arc approximation to a given panel lies entirely
within the forecone from the receiving point.

The curvature effect is used only for the laterally constant source
strength. The curved panel solution with lateral source strength variation,
besides being quite complex, gave undesirably large contributions in some
cases. The flat panel solution for lateral source strength variation appears
to be more accurate and reliable, and so it is used even on curved panels.

Two values of a are used in the method. The true local s is used to trace
the characteristics, or region of influence boundaries. The true local I'ach
and B are computed from the exact isentropic relation:

p. -. -...
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The correlated e is used in the perturbation velocity equations. The
correlated B is determined by solving for the value which would make the
modified linear theory agree with a two-dimensional Prandtl-Meyer corner
solution with the same (V/Vo). From the modified linear theory for a
two-dimensional corner,

'tL =5
V, ( 5 <J,.

or

=' -

Now the Prandtl-Meyer angle is

and for y = 1.4,

or , -C. '-'---- - . . / ---

The exact Prandtl-Ileyer corner solution is:

-AVz - = V sin (v-vo )

AVx = 4x = V cos (V-Vo) - Vo

Substituting Eq. (13) into (9), we get

V sin (v-vo = [ Iv cos (v-vo) -V3

or Scorr. sin (v-vo)
Cos (V-Voj - vO/V

where both the numerator and denominator are positive for expansions (V > Vo)
and both are negative for compressions (V < Vo). The Prandtl-Meyer solution
is exact for expansions, and it is also the exact isentropic solution for

5



compressions. The difference between pressure coefficients on two-dimensional
ramps with and without shock effects are less than 2'.for values of Cp < 0.5
and 1-I0 < 2.6 as shown in Figure 4. Eq. (15) is used to evluate the
correlated B except wnen scorr. >10 it is set to 10, and when true local
Mach number is less than 1.4, a smooth transition is made from Eq. (ib) at
i'iT = 1.4 to Bcorr = 0.5 at MT < Lu.

Evaluation of test cases on swept ramps indicate that much better accuracy
is obtained when the characteristics are not yawed even though there is a
lateral velocity component. But the late-ral velocity component should be
included in evaluating V/Vo for the 8 calculations.

It is not clear whether the B used in the integrands should be the value
at the receiving point, at the sending points, or soie average. In i'ost
cases, the difference was found to be negligible so the receiving point value
was used. But finally, a case was found where the choice of B made a
difference. On a cockpit-like forebody, where the slopes were approaching
zero after being negative, the method predicted pressure much too high. This
was corrected by using an averaged B in the integrands defined by

. / - . ..-,.

winere XR is the X of the receiving point, Xs is the X of the sending
point, and 6L and 6k are the local correlated s's on tie left-running and
right-runniny characteristics, respectively. Use of the averaged 6 eli-inat2d
the overprediction of pressure beoind the canopy and had no effect elsewtlere.

The relative advantages of characteristic tracing versus the usual linear
theory see-through integration bounaaries will be examined. A typical plot of
thie integrana in Eq. (2) for an axisymmetric body is shown in Fig. 5. The
singularity at X" is first order (i.e., of the form l/x, and thus produces arm
infinite result for integration from one side to the singularity, but the
integrand is equal and opposite at xi = x* + 6 and xj = x* - s.
Therefore, tne result of the total integration is finite if the source
strength is continuous. But, if the body has a slope discontinuity, the
source strength is discontinuous, and at a point located behind the corner
such that x* is equal to the x of the corner, the perturbation velocities are
theoretically infinite. It is obviously incorrect to get an infinite
perturbation from an area which actually cannot influence the point under
consideration. If characteristic tracing is perfonned, the point at x, = x*
and " = , will be outside of the influencing region. With the integration
taken only to the characteristic line, the integrand is finite everywhere.

The equations for the rate of lateral translation of the characteristics
or the forecone are presented. Let y,' be the local surface lateral direction
at tne characteristic, and z' the local surface outward normal direction. For
unyawed characteristic tracing, we get the simple result:

dy = : 11 2
dx' 3

6



For the see-through case, the rate is:

dy, = X-X _ -z for X > X1
dx,

dy," = + /1 - B2e2 for X = X1
dx, B

where y' and Z' are the coordinates of the receiving point relative to the
sending panel. The see-through rate is derived from:

/ " "'='- ., -" : ' " '' 0 a,-., . - " = 6 .,r .'! Z - - : ;-0

The usual linear theory (or see-through) integration boundaries are
compared with the actual characteristic boundaries in Figure 6. For point A,
the difference in the influencing region is not great. At point B, the
see-through method is obviously unusable with surface sources because the Mach
forecone does not include the surface anywhere near point B. This condition
occurs wJen B E < - 1, and while extreme, it does occur on a fineness ratio 4
circular arc body at vlach numbers of 2.0 and above. The method is also usable
when B e > + I.

As shown in k<eference 1, the characteristic tracing meTnod is more
accurate for moderate-to-high-angle cones, while the see-through metloQ is
better at predicting the maAiaum expansion pressures oa slender circular arc
oodies.

The characteristic traciny technique eliminates contributions froid areas
wnich cannot influence tile receiving point, such as a strut or pod on the
lower side of a wing wnich cannot affect the upper surface of tne wing.
However, for multi-bodies and bodies with step discontinuities such as inlets,
the characteristic tracing adds considerable coiiplexity to the computer logic
required. The complexity arises because of multiple possibilities for
determining regions of influence. W hen a receiving point is downstream. of a
step, the region of influence of panels upstream of the step can be determined
by: (a) the tracing through space of a characteristic from anywhere along the
step, (b) the tracing of a characteristic from the edge of the step along the
surface, or (c) the tracing of a characteristic along the surface from any
location defined by (a) above. In addition, these complex regions of
influence can be different for different receiving points, so the calculation
can not be done once and used repeatedly.

It is concluded tnat the characteristic tracing method is superior to the
see-through because of; 1) the elimination of the infinite perturbation from a
slope discontinuity; 2) the capability to calculate accurately wiien B c < - 1
and to calculate with B e > 1; 3) better numerical accuracy on moderate--and
high-angle cones; and 4) the elimination of contributions from areas which
cannot actually influence the point being considered. These benefits outweigh
the overprediction of maximum expansion pressures on slender circular arc
bodies and the additional complexity of the calculations.

Having selected the characteristic tracing method, translation of the
receiving point coordinates is required to maintain proper values of the
hyperbolic radius. For axisyrmmetric bodies, the only translation required is
an x translation. For correct results, it was found necessary to keep the
hyperbolic radius value equal to zero on the characteristics in the vicinity

7



of the receiving point. By numerical experimentation, this "vicinity" was
defined by the angular difference between the y - z projection of the surface
normal at the receiving point and the normal on the characteristic being less
than cos (0.16) = 80.8 . After a characteristic has left the "vicinity" of
the receiving point, the x margin from the forecone (hyperbolic radius = 0) to
the characteristic is allowed to become positive but it is not allowed to
decrease. I.e., As the characteristics are traced forward, x translation will
be done if necessary so that the margin is always greater than or equal to the
margin at the previous point on the same characteristic. The translated
receiving point coordinates (Qx, Qy, Qz) are single-valued functions of x1 ,
the x integration variable.

For non-axisymmetric bodies, y and z translation may be required. The y,
z shifting will be considered in two parts. The lateral part is in the
direction parallel to a line between the two characteristics, and the vertical
part is perpendicular to the same line.

The lateral translation is required on general body shapes so that the
hyperbolic radius can be zero on both characteristics in the vicinity of the
receiving point, and to maintain the proper margins or values when one or both
characteristics are not in the vicinity.

Vertical translation is required to prevent bulges such as canopies from
projecting into or near to the forecone from a point behind the canopy. This
is not a problem caused by characteristic tracing; rather, it can be handled
because of characteristic tracing. At a given x1, all panel edges between
the characteristics are tested and Qy and Qz are shifted according to the most
critical panel edge and the criteria zc2 >r/3,

where rI is the radius of the circle passing through the panel edge and the
two characteristics, and r2 is the radius of the forecone at X1.

On some general body shapes, the use of characteristic tracing results in
an anomaly. This anomaly cannot occur on axisymmetric bodies, but will occur
on shapes such as elliptic cones or bodies with flat or concave surfaces, for
example. When the inward normal from a characteristic trace has passed
through the y-z projection of the receiving point, the value of hyperbolic
radius increases as the characteristic is approached laterally instead of
decreasing or approaching zero. Usually, on a panel cut by a characteristic,
the integrand has the opposite sign relative to neighboring panels. But when
the hyperbolic radius increases to the characteristic, the integrand has the
same sign as neighboring panels and larger magnitude, resulting in a large,
erroneus contribution from panels which are on the opposite side of the body
from the receiving point. This large undesirable contribution has been
eliminated by neglecting the integrand when the above-mentioned condition
exists and a lateral limit is a characteristic.

8



The non-integral terms in Eqs. (A-21), (A-22), (A-29) and (A-30) occur at
the receiving point when the point is on the body, and they also occur in most
cases when the forecone intersects a nearby body or when two panels intersect
laterally at approximately a right angle.

Consider a single panel with a side edge at ys.

When Y>YA, the non-integral term is a unit value and is the entire effect,
because the integrands are zero. When Y>ys, the non-integral term is also
the unit value, but at y=ys it is half of the unit value, and when y<ys,
it is zero. The integral contribution is such that the net effect varies
smoothly from the unit value at Y=YA through one-half at y=ys to zero at

non-i ntegral terni

i- "-net effect
I

SLj

It was found that the numerical integrals in Eqs. (A-29) and (A-3U could be

significantly in error at a lateral corner because the terni (X-XI)/xe -

(Z-Z1)
2 in the denominator becomes very small. In the vicinity of the

characteristic, let X1 = X- t, where (X-X -

(Y-Ys)= 0. Then the singular and near-singular teris are of the forn:
T = -tG,"- ),

If we neglect the second order terms in t, we have:

l -- ,, j "' " 2

where - r -

A nalytical ly -_.
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If we apply a ratio to the Simpson's Rule contribution at the usual .U7
offset, and set the Simpson's Rule result equal to the analytical result, we
can solve for the required ratio. Note AXabove = 2&XSimpson's.

- - i /:,'J
-3 TT (.07T , Y1.)1_-0;i °

I I Y~1- I r/- z)/

This ratio is applied at the endpoint of the integrals in Eqs. (A-21) and
(A-22) or (A-29) and (A-30) when (Z-Z,) > Jy-ysl, there is a lateral
discontinuity at the panel edge defining the lateral limit of integration
opposite the characteristic, and Y1 is not zero. When Y1 is zero, it can be
shown that the correct limiting value will be obtained by using half of the
usual non-integral term and that no ratio is needed on the integral teni.

The wing solution included in the current version of the routine involves
some approximations. The calculations on the wing utilize a routine which wds
developed earlier for wing-alone calculations. It uses a planar source sheet
to represent the wing, and the boundary conditions are satisfied in the chord
plane rather than on the upper and lower surfaces. Therefore, the wing
solution is syrmietrical; i.e., it is the same on the upper and lower
surfaces. Only the normal and streamwise perturbation velocities are computea
on the wing. The lateral velocity is assumed to vary from zero at the
wing-body intersection to a maximum. The maximum occurs at the leaaing eage
for subsonic leading edges or at and ahead of the mach line from the wing-bouy
intersection for supersonic leading edges. The maximum lateral component is
such that the total perturbation component in the wing plane is perpenaicular
to the leading edge. In the wing solution, except for the effect of body on
wing, a reflection plane is assumed at the wing-body intersection. Because of
the planar solution, the normal velocity is equal to the source strength. The
wing-on-wing solution uses the samie modifications to linear theory as the body
solution, except it uses see-through rather than characteristic tracing; and
the free-stream (X) direction integration was done analytically. For the
planar case, the analytical X integration case simplifies considerably and is
more efficient computationally. The wing slopes and source strengths are
fitted with cubic polynomials streamwise and parabolas spanwise.

The wing-body interferences are accounted for by first computing the
wing-alone solution with a reflection plane at the wing-body intersection.
Then the body solution is calculated including the effect of the wing.
Finally, the streamwise perturbation velocities on the wing due to the body
are determined, and the wing solution is iterated again with the body-on-wing
velocities added.

For blunt noses, local subsonic flow occurs. The modified linear theory
will provide a solution with local subsonic flow, but unless the local Mach
number is close to 1.0, the accuracy will be poor. For this reason, a
modified Newtonian solution is included in the method. The modified Newtonian
solution includes an adjustment factor from Ref. 2 which provides improved
accuracy at low supersonic freestream Mach numbers on hemispherical noses.

10



The pressure coefficient equation is:

4- ! ,J .F - 0.3

where Cpn is the pressure coefficient behind a normal shock wave? Mco is the
freestream Mvach number, and 6 is the local slope angle. The modified
Newtonian pressures are used until the local Mach number reaches 1.1. Then, a
total pressure loss factor is applied to match the modified linear theory
pressure to the modified Newtonian value. This pressure loss factor is then
attenuated exponentially downstream. The scaling constants involved in the
attenuation were determined empirically based on a small amount of data, and
further analysis based on a broader data base would be highly desirable. To
prevent the (1-Be) term in the denominator of the non-integral terms in .
and 0, from reaching zero at Be=l, it is replaced for Bc > 0.8 with an
arbitrary function with a minimum value of 0.1 at Be = 1.0. This is necessary
to provide a reasonable solution on blunt noses. At longitudinal slope
discontinuities, the exact isentropic solution is easily calculated in
addition to the modified linear theory solution. When the modified linear
theory solution predicts a higher pressure immediately behind the corner than
the two-dimensional solution, a pressure loss factor is applied in the same
manner as was done at the modified Newtonian matching point above. The
pressure loss factor is again attenuated exponentially downstream.

The values of source strength, pressure coefficient, velocity components
and 3 are all assumed to vary linearly across a panel in the lateral
direction. They are continuous across panel boundaries unless there is a
lateral slope discontinuity. In any given row, the numoer of unknown values
of source strength will be the number of panels plus one, plus the number of
lateral slope discontinuities. Each slope discontinuity adds an unknown
because at that panel edge there are two values of source strength instead of
one. The number of control points at which the boundary condition of no-flow-
through is satisfied must be equal to the number of unknowns. Starting at the
top centerline of the body, control points are placed near the initial panel
edge and also near the opposite edge of only the last panel and the panels
preceding a lateral slope discontinuity. The control points are offset from
the edge by a fraction (currently equal to 0.2) of the panel width to provide
better averaging in the event of non-linear variations and to avoid possible
singularity problems. The assumed values of source strength and B are at the
panel edges. The calculated values of perturbation velocities, B and pressure
coefficient are at the control points, and these are extrapolated linearly to
the panel edges for interpolation purposes and to provide the B estimates for
the next iteration.

A restart capability is incorporated to allow extra prints or geometry
changes at minimum cost. Using the restart capability, geometry changes can
be made without having to recalculate the solution ahead of the point where
the geometry changes. After the calculations for each row of panels has been
completed, the pertinent common data is written to a file which can be saved,
providing capability to restart the calculation for one Mach number at the
beginning of any row for which all preceding row computations were completed.
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5'0 COtIPARISONS WITH WIND TUNU4EL DATA AND OTHER THEORIES

Five cases were selected for testing the predictions of the modified
linear theory against wlind.tunnel data or other theoretical methods. The
results of these comparisons could then be used to establish the validity of
the modified linear theory method. Comparisons for the five cases are
discussed below.

5.1 Analytic Forebody

An analytically defined forebody shape was tested in the Langley Unitary
Plan wind tunnel. Pressure data were obtained at several Mach numbers,
angles-of-attack, angles of yaw, and at many body locations. These pressure
data are reported in Reference 3. The modified linear theory method was used
to calculate pressures on this body, called Forebody 4 in Reference 3, at zero
angle-of-attack and zero yaw at the four tested Mach numbers. The body shape
is shown in Figure 7. Calculated pressures are compared with the rieasured
pressures of Reference 3 in Figures 8 through 17. The agreement is quite good
considering the high slopes on portions of the body. Linear theory
significantly underpredicts the pressures on the upper, forward portions of
tie forebody at Mlach 1.7, but the modified linedr theory compares w#ell. At
the higher Iach numbers, linear theory is unusable because BE is greater than
1.0, but the modified theory continues to compare well with the data.

5.2 Drooped Nose Bodies

A series of bodies with circular cross-sections and pararetrically va;,ying
amounts of nose droop have been tested in the NASA/Langley Researci Center
Unitary wind tunnel. The results are to be published in the near future by
Garry Shrovt. One of the body shapes with sixteen degrees droop is shown i n
Figure 13 as displayed by the graphics routine. The pressure, or wave, drag
results were obtained by subtracting estimated skin friction drag fror:i the
:.ieasured forces. Pressure drags predicted hy the modified linear theory for
three bodies at three ;iach numbers are compared with the test data in Figure
19. The agreement is quite good, and is much better than the far field (area
rule) results.

5.3 Conical Wing Body

The conical wing body consists of a symmetrical wing with blunt trailing
edges and a mostly conical body underneath. The maximum thickness of the wing
is at or near the trailing edge. The planform is a 570 sw-tept delta with the
outer trailing edge cut off at ail angle. The body is a segment of an 80
cone over more than half its length with a transition approaching a constant
section near the aft end. See Figure 20. This configuration has been tested
in the NASA/Langley Research Center Unitary wind tunnel and the data are
reported in Reference 4. At lach 1.6 and a Reynolds number of 2.0 x 10
6 /ft., the CD m is 0.0186. Subtracting estimated skin friction drag of
0.0063 leaves a measured pressure drag of 0.0123. The modified linear theory
calculation yields a pressure drag of 0.0039, consisting of 0.0014 body drag
and 0.0025 wing drag. A close examination of the geometry reveals that the
1,,ing leading edge is very blunt. Also, the wing is conical to tile stream.ise
station of the wing tip. A conical flow calculation using the modified linear
theory with the wing defined as part of the body and inpijt points concentrated
near the wing leading edge yields a drag prediction of 0.0082. Thus, most of
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the discrepancy is explained by the inability of the wing solution to
adequately represent a shape where most of the drag occurs in the first one or
two percent of the chord.

5.4 ilissile With Inlets

A missile model with axisymnetric inlets was tested at NASA/Langley
Research Center and the data are to be published soon by Clyde Hayes. The
arrangement is shown in Figure 21. The 0=90o tail orientation with wings
off is compared at Mach 2.5 with the wind tunnel data. The measured CD .
is 0.52 from which estimated skin friction drag of 0.20, spillage drag n
0.04, and boundary layer diverter drag of 0.02 are subtracted, for a net
experimental wave drag of 0.26. Due to difficulties with the computer
routine, it was necessaty to run the configuration in parts: the forward
body, the aft body, tails and inlet lip. The modified linear theory
prediction is 0.27 for the wave drag on the body, tails, and inlet lip. This
is considered to be good agreement.

5.5 Area Rule Coriparirons

The axisyrimetric body for this case consists of a tangent ogive nose
followed by an arbitrarily "coked" section. A trpezoidal wing withi 450
leading edge sweep and a 65A005 airfoil is located at two positions. See
Figure 22'. Th'e for'jard position provides positive, int rferunce drag !),t,:e2n
wing and body and the aft position results in negative, or favorable,
i nterference. Area rule and modified linear theo,,y drags were calculated for
flach numbers fror.m 1.2 to 2.0. The body alone and wing alone drags are
compared in Figure 23. T:ie body alone drajs agree quite clcsely wit'+ tthe
modified linear theory values being slightly higher at ;IatCh 1.3 and 2.0. The
wing alone drags agree fairly well except ac the sonic edge iach condition
ii'aere the area rule drags are always high. At elach 1.8 and 2.0 (supersonic
leading edge), the modified linear theory drags are slightly higher.
Interference drags and total drags for the two wing positions are shown in
Fijure 24. The interference drag predictions are sir.iilar, except the mouified
linear theory does not predict the very large interference effects at ,.lach 1.2
as does the area rule. Intuitively, the area rule interference effects at 1.2
Mlach, particularly for the aft mounted wing, seem too large. Also, on tle
total drag, the modified linear theory curves are swoother because of the more
reasonable results for the wing and interference drags.

6.0 CONICLUSIONS

Comparisons between wave drag and pressures as predicted by the modified
linear theory and as obtained from wind tunnel tests or area rule predictions
were made. In the conical wing body case, agreement was poor because of the
inability of the wing portion of the routine to adequately model the extremely
blunt leading edge. In the other four cases, agreement is good. For the
analytic forebody, good agreement was obtained with wind tunnel measured
pressures over a wide ilach number range on a shape which has high local
slopes, where linear theoty is unusable and area rule is highly inaccurate.
On the drooped nose bodies, pressure drags predicted by the modified linear
theory agree well with the wind tunnel data for the three droop angles and
three Mach numbers. For the missile with inlets, wave drag calculated by the
modified linear theory agreed with wind tunnel data for the one case
examined. In the area rule comparisons, the modified linear theory drags

13



agreed well with the area rule values except in a few areas where there is
reason to believe that the modified linear theory results are more realistic
than the area rule values. It is concluded that the accuracy of the modified
linear theory has been verified.

It is recommended that the modified linear theory be used to predict
supersonic pressures and wave drag on any bodies and wing-bodies which include
areas of moderate to high local slopes, or which have any areas including wing
leading edges which have supersonic edges (Be > 1). It is also recommended
that the computer routine be improved to make Tt more efficient, general and
reliable.
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APPENUIX A

DERIVATION OF PERTURBATION VELOCITY EQUAlIONS

A.1 Curved (Circular Arc) Panel with Source Strength Laterally Constant

The velocity potential is

) _ (A -

where d z on the surface of the panel. No subscript
or a Q subscript (below) indicates the receiving point, and the subscript i
indicates the sending point. S(xl) is the source strength at xl. The
curved panel is assumed to be a seglent of a circle; thus with ds = rI d ,

Yl = rl sin P and zl - rl cos v we have

\'o .-,__ _I<

where y and z must be defined relative to the center of the circular arc panel
segment. On any panel, the curvature and (y,z) coordinates of the arm center
can vary with x. The angle v is positive clockwise and rI is defined as
positive for convex panels and negative for concave panels. We will inteyrate
from left to right, so rI d P will be positive for both convex anu concave
panels. Wow if we let y = o, the u = o direction is defined by the vector
from the center to (o,z) for convex panels, and the opposite direction for
concave panels (i.e., from the receiving point to the center of the panel
arc). Also define rQ as the vector length from the circular arc center to
the receiving point, but with the same sign as r1. Now

- . ,_S(.,_. , .. . . . - -- -&L

Transforming 2 d 2Lt k - i -

-, ,,:

A-1
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In Eq. (A-4), if kj _< 1, the inner integral is an elliptic integral of
the first kind with modulus

-I

and kI . 1 when xI < X*, where x* is defined as the xi where the
forecone passes through the opposite side of the (imaginary) complete circle
defined by the radius of the panel element being considered, or

x* = x -B rQ + rx*

For x > x*, we must transform again using sin = kj sin . This gives:

(- " ' - '..2/ / 'X - "

For the last transformation to besingle-valued, we must lirit 7r/2 < r/2
- , v < i < i). Then cos u ./1 - sin 2  and cos = / 1 - ..

Defining k2 = 1/kl, we have:

.I ' s C ,- ,'", ( -
(_____...____ _ I- '

' , . - , .'-A /.

-' 7

where to include the complete area of integration, the bracketed tenis in Eq.
(A-8) must be summed over all the panels within the area of integration
defined by the characteristics. Also, except for bodies of revolution, x*
will be different for each panel.

The next step is to differentiate with respect to x, y and z to obtain the
perturbation velocities. The y derivative will be taken first because it is
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simpler and is the same for x1 < x* and xi > x*. Going back to Eq.
(A-4), the only terms that are functions of y are the limits of integration
on when not on a characteristic, and then

h -1 LL

The y derivative of Eq. (A-4) can be written in several fonmis:

C''

I, .-'/ £ " ,

5

r, 7 . . ' - ..-

but if either lateral limit is on a characteristic, set that tern to zero
because on a characteristic

For the x and z derivatives, we will need to take derivatives of the
limits of integration. The upper limit (x or x1) of x integration is, in
the vicinity of a point A on the surface o$ the body where e is the local slope,

-~Y 31 -- LA

where r, : rA + e1 (x-xA). Therefore,
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The lateral limits, when x < x*, are functions of y or s which are independent
of x and z, so

When x > x*, the u transformation is such that on the forecone

(characteristic), u = r/2. Thus,

-_for x > x*, on a characteristic

But with x > x* and the lateral limit not on a characteristic, from sin W =

kI sin q' we derive

where

7 

"' --( , - - '

Now we are ready to differentiate Eq. (A-8) in three parts: (1) the

derivative of the upper limit on the x integration, (2) the derivative of the
lateral limits of integration, and (3) the derivative of the integrand. A

contribution to part (1) occurs at Ac = x when the receivinq point is on the
surface of the body, and also whenever there is a local maximum of the
integration variable xI due to the forecone from the receiving point tracing
directly to the body (panel) at a right angle. At these points, k2 = U and
F(O, t w/2) - F(O, - w/2) = i: wwith the sign determined by the sign of
rj. So differentiating the upper limit of Eq. (A-8) and substituting Eqs.
(A-A12),

S= _ ~ ' /,, (

- / , VS(.',) :,-i ,(

A-4-''
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where the forecone from the receiving point traces directly to x, without
first passing through or around a body and the area inside the characteristic
has a local x maximum at xj. The z direction in this case is the outward
normal from the sending panel at xi. In the most common case, xi = x and
rI :rQ.

The second part of the x and z derivatives comes from the derivative of
the lateral limits of integration. This contribution exists only when x > xw
and the limit is not a characteristic. Differentiating the limits of Eq.
( A - 7 ) ,. _ - - _ _ " -

IT -11

Substituting Eqs. (A-15), (A-16) and (A-5), we get

- - 4----

except use zero when wL or uR are on a characteristic.

The third part of the x and z derivatives comes from differentiating the
integrand of Eq. (A-8):

- I-

-- I -- ': - 7 -- ] , ,_ 'I

(P C

V. :" : "

-, 5
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Combining the contributions from Eqs. (A-17), (A-19 and (A-2U), we get for

rL

" I?'L

5~-~ -,- ., - . _A

'; - d 
-  

2 .: t j ' ' 7 , .

and for I~z:

z - , - ' .- 
. ,

.... 4- "-.

'3 , ,---.
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The X and 4z integrands are functions of incomplete elliptic integrals of

the first kind and their derivatives with respect to the square of the
modulus. The amplitude may be negative, and F(k, - V ) = - F(k,,.). The Oy
equation (A-10) is much simpler and contains no elliptic integrals.

Several pertinent facts regarding Eqs. (A-10), (A-21) and (A-22) are: (1)
the non-integral terms occur whenever the characteristic from the receiving
point intersects the sending panel at a right angle without around or passing
through any intervening surface and either the sending panel is convex, or the
sending panel is concave and the (y,z) projection of the receiving point lies
between the panel arc and the center of the arc; (2) the integral teri.ls are
actually lateral summations over all of the panels within the bounds of the
characteristics and X* may be different for each panel; (3) the terms
containing cos u must be set to zero when the w limit is a characteristic; (4)
the positive z and i = ,, = U = U directions are defined by the vector fro.
the (y, z) center of the sending panel arc to the (y, z) projection of the
receiving point if the sending panel is convex, and the reverse if the panel
is concave; (5) the moduli of the elliptic integrals are defined by

- ,v - , . . - 2.

-I-

and (6) the amplitudes are related to the real anjle t by

=1/2

= sin-1 (k I sinQ)
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A.2 Flat Panel with Linear Lateral Source Strength Variation

Flat panel, as used here, refers only to the lateral shape. The
panel may have longitudinal curvature and twist. The positive z direction is
the outward normal direction from the sending panel, and will vary with x
along the panel. If we define the source strength as

S(xl) = eo + el y 'A-5

where eo and el are functions of xI, the velocity potential is:

* t4 -

Carrying out the lateral integration from the left side, YL, to the right
side, YR, of a panel we get

r- , A . (- '. \ ,. -

5* - ,

Now we will differentiate with respect to x, y and z to obtain the
perturbation velocities. Wherever there is a local maximum of xc or xl,
the derivatives of the limit are as derived in Eq. (A-12) and again 2) , -, : '
At a local maximum of xc or x, the integrand at YR minus the integrand at

YL is - eo =, so the derivative of limit terms are

I I~

When YR and YL are not characteristics, they are not functions of x, y, or

z so there is no derivative of lateral limit contribution.. When YR or
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YL are on a characteristitc, the integrand is infinite, so in order to take
only the finite part we again neglect the derivative of lateral limit term.

Adding the x derivative of the integrand to the derivative of limit term
in Eq. (A-28),

A -29

N , _

_ 1_3 - , . v i.-

and similarly for the z derivative,

1 - - -- _ _ __
-

_.. . . ..

/ a-- ' .. " - ' "

Note that the Oz integrand is identical to the Ox integrand, except the

sign is changed and (x-xl)/ 83 is replaced by (z-zl)/B.

The only contribution to 4y is the derivative of the integrand:

-- '--C'.; r , ,-
• - ,- , . .. . ,-
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Several pertinent facts regarding Eqs. (A-29), (A-30) and (A-31) are
(1) the non-integral terms occur whenever the characteristic from the
receiving point intersects the sending panel at a right angle without wrapping
around or passing through any intervening surface; (2) the integral terms are
actually lateral sunations over all of the panels within the bounds of the
characteristics; (3) the terms containing

*' - \ ,'- t --

must be set to zero when the y limit is a
characteristic; and (4) the positive z direction is defined by the outward
normal from the sending panel.

A-10
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1.0 INTRODUCTION

This report describes Vought's Improved Wave Drag "Analysis Routine", aria

an interactive computer "graphics routine" to view and edit the input data

deck to be used with the analysis routine. The analysis routine computes

local velocities ano pressures on the surface of the configuration and

integrates the pressures to obtain lif., drag and pitching moment. At the

present stage of development, the analysis routine can handle a single body

with inlet or exhaust surfaces approximately perpendicular to the free stream,

and one pair of wing panels in a horizontal plane. The wing data can not be

input to or displayed by the graphics routine. The data deck describes the

external skin contour of an aircraft fuselage which can have longitudinal

steps, and may have a blunt nose and discontinuous body slopes or curvature.

The input data consists of three dimensional point definitions, together witn

sufficient information to divide the points into rows and body sections, to

identify lines of slope or curvature discontinuity, and to indicate any
"covered" areas where no boundary conditions are applied and the source

strength is zero. No surface slope information is input by the user.

The program uses a three dimensional parametric cubic space spline to

define slopes along curves connecting input points both laterally and

longitudinally. These space curves then are used to define "Coon's patches"

(parametric cubic surface patches). The resulting surface definition is

guaranteed to be continuous in position as well as first and second derivative

except along lines that the user has identified as slope or curvature

discontinuities. The configuration is assumed to be left-right synnetric.

Local velocities and pressures are calculated to two to six points on each

panel, and the source strength varies linearly in both directions on the

panel. The source strength is continuous across panel boundaries, unless the

surface slope is discontinuous. Because of these techniques and the curved

panel definitions, the panels can be quite large in regions where the

velocities and source stengths are not expected to vary rapidly. For example,

in a region where the configuration is nearly axisymmetric, the panels coulo

span thirty degrees or more laterally. In general, the input deck should

contain a much smaller number of points than would be required for an area

rule input deck describing the same configuration. A permanent restriction on



the longitudinal location of points within a row is that the slope (after

rotation) of the fore and aft panel boundaries must be less than I/14'l /
/ + c2 relative to the Y-Z plane, where M1 is the larger of true local

'a.ch nu,.Zer a,-, 1.1, and c is the panel surface slope. The program will

automatically rotate the input geometry to an input value of angle of attack.

The graphics routine has been implemented on a CDC 6600, CDC Cyber 175,

and a PRIME mini-computer with a Tektronix 4014 using the Plot 10 software

package. However, the program was written to be easily transportable to any

type of graphics scope.

2.0 GEOMETRY CONCEPT

The fuselage external surface is defined by a set of three dimensional

point definitions. A right-handed X-Y-Z coordinate system is used: positive X

is aft, positive Y is the right side, and positive Z is up. Points are input

in rows, and the resulting set is connected both laterally and

longitudinally. While the analysis routine only requires lateral point

connectivity, the splining technique used to determine body slopes requires

the connectivity in two directions. Thus, each row within a section must have

the same number of points. Points are ordered from bottom to top, and the

rows are ordered from front to rear. Lateral symmetry is assumed and only the

positive Y half of the fuselage is defined.

The wing geometry is planar, and may be defined by airfoil ordinates,

standard airfoil definitions or streamwise slope inputs.

3.0 INPUT FORMAT

3.1 INPUT DATA DECK, EXCLUDING WING DATA

The data deck, except for the wing data if used, consists of only five

types of cards: title cards, point definition cards, an ENU card, an

Srefcard, and a Mach number card. A case begins with two title cards. The

first 40 columns of both cards are displayed on the scope. Following the

title cards, each card contains a single point definition, with five free

format data fields in the first 40 columns. Columns 41-80 can be used for
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comments. Data fields are separated by blanks or commas and may be numeric or

alphabetic. A field is interpreted as numeric if the first character is

numeric (0-9, plus, minus, or decimal) and is alphabetic if the first

character is A-Z. A decimal is assumed to the right of a numeric field if

none is present within the field.

The five data fields are the X, Y, and Z values for the point and two

point type fields. The coordinate fields may be numeric or may be defined by

the letters "X", "Y" and "Z", to indicate to use the previously aefineo

value. The point type serves three purposes. It indicates the division of

points into rows and sections, indicates slope or curvature discontinuities,

and indicates edges of covered panels. Point type is an alphabetic field.

The first character indicates whether the point initiates a section ("S"),

initiates a row ("R"), is a corner point ("C"), is a curvature discontinuity

("U"), is a covered area ("V"), or is a normal point (anything else). If the

first character is an "S", "R" or "C", the second and third characters can

indicate the direction of a slope discontinuity. An "X" indicates a

longitudinal discontinuity and a "Y" indicates a lateral discontinuity. Any

other characters except "0" are ignored. For example, "CY" indicates a point

at which the slope is discontinuous in the lateral direction, and "RX"

indicates the beginning of a row at which the longitudinal slope changes. "C

is interpreted as "CY". If a point is both a corner point (slope

discontinuity) and a curvature discontinuity, the slope discontinuity must be

indicated first (e.g., CXDY or RYUX). The initial point of a data set is

automatically assigned as "S" by the program. If less than four fields are

supplied, the previous values are assumed for the missing X, Y or Z fields and
"normal point" for the point type. Point definition input is terminated by

the letters "END" in the first data field of a card. When wing data are

input, they are inserted after the body data are completed and before the END

card (see Sction 3.2 below). Next is the Sref card with reference area and

reference chord and geometry rotation angle (degrees) in three data fields

(free format). There must be at least two non-zero values on this card. The

last input card contains analysis Mach numbers in free format, with a maximum

of 19 values. The minimum Mach number allowed is 1.1 The second "i'lach

number" may be used as an indicator - e.g., 0 for only wing-alone

calculations, -n to restart at row n.
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The covered area indicator ("V") appears in the fifth data field unless

the point type is noraml (blank, not a row or section initiator). If the

fourth field would otherwise be blank, the V goes in the fourth data field.

Any additional characters in the V field are ignored. In any lateral row of

points, there must be either zero or two V indicators. The V inaicator has no

effect on the surface splining. When the V indicators are matched by V's on

an adjacent row at the longitudinally connecting pairs of points, the analysis

routine is triggered to bypass satisfying the no-flow-through boundary

condition on the intervening panel or panels and to set the source strength on

those panels to zero.

When the fuselage cross-section is a circle and seven evenly spaced

lateral points will match up with adjacent rows in the section, a simple

radius and Z location can be input instead of the seven X, Y, Z values, [I.e.,

one card can define a complete row.) In this case, the five data fields are

X, radius, "AX", point type and L center. The "AX" in the thiru fielu may

have additional characters after the AX, which will be ignored. The point

type can only be S, SUX, R, RX or RUX. The Z center shifts the center of the

section vertically, if desired. The program computes the X, Y and L of the

seven evenly spaced (sO degrees) lateral points.

3.2 WING INPUT DATA DECK

The additional input data for the wing is inserted after the body data is

completed and before the END card. The wing data begins with WING in the

first free fonnat data field of a card. At present, the wing data cannot Oe

included in the input to the graphics routine.

When wing data are input, the rotation angle of the Sref card must De

zero, and there must be only one real (. 1.1) Mach number. If only a

wing-alone calculation is desired, input two Mach numbers with the second one

equal to zero. The reference area input to or calculated by the wing routine

will override the reference area on the Sref card aescribed bove. Also note

that the drag values printed with the body calculations do not include tne

wing drag and vice versa.

The wing surface is defined by airfoil sections. The input can consist of

an area rule deck or surface slopes which will be curve-fitted. Tne wing
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planform may be trapezoidal or it may have one leading edge break (two sweep

angles) and up to three trailing edge breaks (four trailing edge sweep

angles). The wing geometry is flattened into a Z=constant plane through the Z

value of the root chord. There is an upper limit of six spanwise curve fit

intervals, which means that with an area rule input, a maximum ot 7 span

stations can be input unless a discontinuity flag or duplicate span station

locations (Y, Z) are used.

The wing inputs are described in the following figures and definitions.
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WING DATA INPUTS

-IF A NEGATIVE NON-ZERO NUMBER (- A) IS INPUT IN COLS. 11-20 AND IF
NLESWPS= NTESWPS=I. THE PLANFORM IS DEFINED BY AR. A .SWL(I . AND
EITHER SEMSPN OR CROOT.

.----10 11 - 20 21 ------- 30 31 ---- 40 41 ---- 50 51--..60 6F10.0
0EL-Y Y-LP-DISC SLOPE-MULT DEL-SLOPE SREF CROOT

(LT.YLEfl). (RATIO TIMES (RADIANS) (REQUIRED (NEEDED
LT..OSEMSPNI INPUT SLOPES IF ONLY IF

IF GT..OOOI) 1! NSREF 541 IARULE=O)

/YTE(3) YTE(4) OMIT IF NTESWPS<4 I
1/ ------ 10 11 ----- 20 21 ----- 30 31 ----- 40 41 ----- 50 51----... s.0
SWTII) SWTI2) SWT(3) SWT(4) YTE(l) YTE(2 ONLY IN TH S USED
(DEGREES) YTE(1) FOLLOWS IMMEDIATELY CASE. YLEII) A 0 ONLY

AOR CR,-AI AFTER SWT(NTESWPS) YTE(J) ARE THE IF
IRIGHT-HAND IOU - IARULE

1 -- 10 11 ---- 20 21 - 30 31 ---- 40 bOARD) BCUNDARY zo
SWL(1) SWL(2) YLE(13 YLE(2) O0RES!. N0ING TO,
(GT. 0. (GT. 0.

LT. 802 LAST VALUE MUST=SEMISPA41
DEGREES) - YLEr)zSEMISPAN IF NLESWPSzI

----- 0t 11--20 21--30 31--40 41--50 51--60 SF 0.0
/ 0. XXT(I) YTE()2 XXT(21 YT(31 XXT( 3 1 USED

X OF ROOT IF NTESWPS>2. CONTINUE ON ANOTHER CARD ONLY
CHORD T.E. I IFL /I -- 10 11---- . O 21 ---- 30 31 .--- 40 41 ---- 50 51 ---- 60 6F101.0 IARULE

0. XXL1I YLE(2) XXL(2) _LE!3) XL( 3j/
X OF ROOT OMIT I-NLESWPS=l
CHORD L.E.

/I ------ 10 II -- 0 21 ---- 30 31 ---- 40 41 - 50 51 .--- 60 6FIO.O
,/YEX(1) YEX(2) • ETC. OMIT I NEXTRY=O

1 3 57 9 11 13 15 1 INTEGER
IARULENTESWPS

fl TO 41
NLESWPS(I OR 21

MOOLIN(MUST BE 1)NSREF(O TO 61

u NEXTRY(O TO 61
THICK(l FOR THtCKNESS.MUST BE 11

N-SPAN-INTS(I TO 61

1--4
SWING
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NOTE N'S ARE NEEDED ONLY IF AIRFOIL HAS CORNERS AND FNORD>5.
IF N'S ARE USEO THE CHORDWISE CURVEFIT OF THE AIRFOIL
SLOPES WILL BE DISCONTINUOUS AT X/C.A I.E.. THE VALUES
OF X/C, DEFINE THE CMOROWISE CURVEFIT BOUNDARIES.

NOTE PROGRAM SHOVES LEFT AND RIGHT WING PANELS TOGETHER
IF THIS IS NOT DESIRED BUT Y(l)>D. 2 AODITIONAL AIRFOILS
AT Y:O AND Y:Y1I, WITH ORDINRTES=O tulS___AoZ" -

ALSO PROGRAM FLATTENS THE WINGZY"-Y..± .

I ---- 10 1 ---- 20 21 ---- 30 31 ---- 40 41--50 51--60 61--70 71--80 8FIO1.
Z!C, Z/C Z/C .ETC.

SEMI-THICKNESSES OF THIS AIRFOIL. IN EITHER PERCENT CHORD OR FRACTION REPEAT
OF CHORD NAF

OMIT IF STANDARD AIRFOIL OPTION (AFID) IS USED TIMES,
Z/C'S CONTINUE ON SUBSEOUENT CARDS IF FNORD>8 2NAF,

-I 0 11 ---- 20 21----30 31 ---- 40 41 ---- 50S S1----O 6 --- 70 73 76 7 NAF512,XL Y Z CHORD ;, PFI XTMAX DISC FLO N, N, BUT 6X .CHR O.I ,.T/C OR LESS

AFID 55A.O44.FOR EXAMPLE . 7F10.0. | CURVE-
OR 63A.OR 64A. EITHER OR 313 FIT
OR BIC FRACTION INTER-

VALS

-10 11----20 21----. 31----4o 41--5D SI--60 61--70 71--B0 8FIOo
X/C, X/C2  X/C, ,ETC.

VALUES OF ;,.'C CAN BE EXPRESSED IN EITHER PERCENT CHORD OR FRACTION OF
CHR, CNE SET OF VALUES APPLIES 7O ALL AIRFOILS

C OIT IF FNORD' 3.
X/C'S CONTINUE ON SUBSEQUENT CARDS IF FNORD>8

I ------ :0 11 .--- 20 21- ---- 30 31 ---- 40 4FIO0.
XORIG YORIG ZORIG FNORO

IF FNORD< 3.. THE X/C CARD IS
?7TTEC. THE PROGRAM SETS

FNOR3 = 13. AND USES EVERY
IQ. CHORD.PLUS 5 % AND 15A.

1-3 11-.... 0 3 ,7 ,AIO

103 NAME
6 (ADDED TO END OF TITLE)

OR 7

NOTE XY..Z. AND CHORD VALUES MUST BE SUCH THAT THE
RESULTING (FLATTENED) WING HAS NO MORE THAN 2 L.E.
AND 4 T.E. SWEEP ANGLES.
TOLERANCE IS A(TANAc le.O1745,(TANA,,)<.O1745

AREA RULE INPUT(S4007)
DATA ON THIS PAGE IS USED ONLY IF IARULE=!
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NOTE N'S ARE NEEDED ONLY IF AIRFOIL HAS CONNERS AND NWRFOR>5.
IF N'S ARE USED THE CHOROWISE CURVEFIT OF THE AIRFOIL
SLOPES HILL BE DISCONTINUOUS AT X,-F,; I.E.. THE VALUES
OF XAF DEFINE THE CHCROWISE CURVEFIT BOUNDARIES.

NOTE PROGRAM SHOVES LEFT AND RIGHT WING PANELS TOGETHER
!F TrIS IS NOT DES:REC BUT Y(I'O. 2 ADOITIONAL AIRFOILS
AT Y'=O ;N0 YY(,) WITH ORCINATES=O rUST BE RODEO.
ALSO PROGR.AM FLATTENS THE WING(AY=,/"Y.T_ 3

/I ---- 7 5---14 iS--2l 22--29 29--35 56--4 43--49 5O--56 57--63 64--7G 10F7.O
WAFCRC, WF!,Dl. WAFCRCL 0,FORS,WFOtkD, WAFORC. WAFORO WAFORD, WAFORD WFORD. REPEAT

SEr,!-THICKNESSES OF THIS AHIFOIL V NWAF
CMrrT IF STANARD AIRFOIL OPTION (AFID) IS USED TIMES

WoFOR2'S CJNTINUE O;4 SUBSEQUENT CARfS IF NNAFOR '" 10
/I -7 8--- 14 15--2! 22--28 41 ---- 50 S51 ---- 60 51 ---- 70] 73 75 79 1 4F7.0.Xr s Y Z CHORD AFIC XTMAX CISC.FLG N, N, Nfl I2X,

OR ' F.O .O.
T/C[ 313

REPEAT THIS CARD NWAF TIMES

/I---7 8---14 15--I Z--2e ZS--35 36--4Z 43--4S 50--56 5"7--63 64--70 1OF7.0
XAF XAF XAF XAF XAF XAF XAF XAF XAF XAF

OMIT IF NWAFOR -c3

XAF'S CONTINUE ON SUBSEQUENT CARDS IF NWAFOR >10

16 20 INTEGER
NWAF NWPFOR

(2 TO 12) (3 TO 25)
LBUT FOR NWAF >7 TO BE ALLOWABLE.

EITHER DISC. FLAG OR TWO AIRFOIL DEFS. AT THE
SAME Y.Z MUST BE USED SO THAT S OR LESS
SPANWISE CURVEFIT INTERVALS RESULT.

NOTE X*, .Y.Z. AND CHORD VALUES MUST BE SUCH THAT THE
RESULTING (FLATTENED) WING HAS NO MORE THAN 2 L.E.
AND 4 T.E. SWEEP ANGLES.
TOLERANCE IS A(TAN-%,,] 4.O174Soa( TAN.-")<].I745

AREA RULE INPUT(TMX-9471
DATA ON THIS PAGE IS USED ONLY IF IARULE-2
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IF JCONIC >0, x IS INTERPOLATED AS A FUNCTION OF

X-(E -F -YI

INSTEAD OF X/C

I .--- 10 11---.20 21 ---- 30 31 --- 40 41 ---- 50 51 ---- 60 6F!O.O
( X/C 1 4- Ly 4 IX/C15  OMIT IF NSP LP=I OR 2

TH!S CARD USED ONLY IF NPN>2(AOOITIONAL CARDS NOT SHOWN ARE USED IF N N'SI

/I --- 10 11- ---- 20 21 ---- 30 31----.40 41 ---- 50 51----.60 6FI.O
Y3 ,L-UT XC 2 XC, (
Y ALP-MULT IX/CI 04, -X/CI 2 OMIT IF NSP LP=I OR 2

NOTE: O NOT PUT AN INTEGER IN COLUMN IICOL.! IS PART OF THE Y3 FIELDI

I ------ 10 11 ---- 20 21 ---- 30 31 .--- 40 41 ---- 50 51---.60 6FO-o
( X/C)2 X/C. X/C5 OMIT I NSPALP=:

THIS CARD USED ONLY IF NPN>2(AODITIONAL CARDS NOT SHOWN ARE USED IF N N>53

,/ .IO 11 .-- 20 21 ---- 30 31 ---- 40 41 ---- 50 51 - 60 6FI0.O
/ Y2 ALP-MULT (X/C), (X, (X/CIL ONI I NSPALP=I

NTE; DO NOT PUT AN INTEGER IN COLUMN I(COL.I IS PART OF THE Y2 FIELDI
(/I ------ 10 1 -2 21-....30 31 ---- 43 41 -- 50 51 ---- 60 SBFIO.O

3XlC )3 , / a (x/c4l.l

THIS CARC USED ONLY IF NPN>2(ADCITIONAL CARDS NOT Sh2 N APE USEO IF NfN>5)

1 -- 10 11 - ---- 1----- 30 31-40 41------ 1-60El ----3 --- 70 1 F9.0.
pYI ALP-MULT (X/C) IX/CI, JC2.I. 5F10.O.I1D

' NPN' I ____ _C_ 
I_ 

_._5F 
0.0.110

11 TO 9) 1NOTE c< IS IN RADIANS PL'.FV PTON
______ T-ThT TIMES

3 4---,C 1 .. 0 21 -- 30 31 ---- 4C 41 ---- 50 51 --- C . 70 [1.12.7X.
/ . BLANK El F1 EZ F2 E3 F3 6FIO0

NSP LP0 RMALLY I 7T -.IF LEFT BLN'K IS SET TO 3. BU- !F A NEGATIVE
-\N-'U7. THEN 1. C3;-FIr C3EFFICIENTS WILL tE READ N 6FIO.

F0Rri.l -3E0F . CAT~4 quOVE]
NXINT X-IFBLANA" :S NOT 5LANK.THE CURVEFIT BOUNDARIES ARE

1 TO 4) DEFINED AS X/C'Sj [REFEATN-S'PAN- NTS TIMES

. ---- 10 11- - 20 21 ---- 30 31 - 4--- 40 41 - 5- 51- 0 6FIO.0
AY(I AY(2) AY(31 AY(41 PYIS) AY(61
(=O.I

AYI) IS THE LEFT-HAND OR INBOARD BOUNDARY
OF THE I T. CURVE-FIT INTERVAL: AN a IN THE
FIRST COLUMN CF AN AY FIELD (11.21.ETC.)
INDICATES A SPANWISE SLtPE DISCONTINUITY-
RESULTS IN AN EXTRA Y AND SPEC:PL INTEGRATION
TREATMENT

THIS CARD OMITTED IF N-SPAN-INTS=I

- - 2 2-
/ RUTX RUTY RUTZ

X.Y.Z COORDINATES OF ROOT CHORD LEADING EDGE

ALL DATA ON THIS PAGE OMITTED IF IARULE >0
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%o ta tio:l

S , b olI Definition Uni ts

-~3PAN-Numzbvr of xn~s curve-fit intervals None

MTICK Thick-ness opt'-on; ITHICK = 0 for camber, None
and -- Ie' of attaclk cffects,

IT14:CK - 1 for thickness effects

N EXTRY Nu.~rof e:taspan stations (in addition "one
to thosc deemndby multiples of D--L-Y)
'or aero calculations

N 7, ."iCO ci :n; N'L 0 tctnl .)Ian N~one

e Ski.~~' u~rod in n.2aunits as plan-

dis in ft.'

d 17.2, re u £n i n~; NS r7F =3 inu t
Sor f2. t:.;d as a rartio, i.e., roLferenca

olan ere ; NSREF -4
r.2 c n i---- pan ar2, plus an c:~t.2nsion

7inchets (or ,;hotever units
U),thi-s is useful for thick-ness

drcng cases ;' exposed panels have been
rfor refflection plane effect;

_f UF -5rcnfercnce area defined by ouiter-
most wing rPa2i-- e.,tendcd in to the centerline;
:SREF -6 rafercnca area defined by innernost

wing panel extended out to the tip station.

~:DLN onlirnear' t, c-ation; pressure coefficients None
calcul.ated f- the exnct equation using
calculatc'1 srrv ~ir-.'ise pertubation velocity
rinJl assuz.,ed 7,nr..Lse portuhation vtoiccitv.
in idditio-n, wl,.e ITMIC' .=I, local 3 (fo re-
co shape.) ;,; 7o-Fipd tc account for local
Pe t turbc: ':ol-ci tv and tho fllot, ranrency Con-
diur(n us-s -c~ .-ifloci %, ra-ther t.ha.n free-

't eam': 1s: indvno-J; n-.ror (avani!'hle

T-1" C -U. , *" Tn t I~. ;o l t i , '1 1 1 T ,

1' A :J1':a o u only

.-::011 0 I
-11tnI t. . c U!,Ul



diIli :.L~on Units

S, P 3 of svp.: IeS u'-od( to da2fijje None
lc ,:'ein,, cd~c. of pl1 form

Nli;21er of swctp ar-n-les used to de fine None
trailin~g edge of planfor-m

G,,cr',-rv an(! ;Irn inout Onoion. If 'lWL one
> 0 (allowed onlyv if ITEICK > 0, JsYM = 0,

JT;;.,':'T !!L 0, an~d KONIC =0) , theo wing defini-
tion oortion of an area rule± inmic decl,
provides. both the .:i,,ec.tr and airfoil
(slope) inpluts. If ZARULE = 1, Vought format
is used and if LAULZ = 2, NASA (71I X-947)
fo]7.aut- i. used. If 1A4ULL < 0, Slope input5
are rv-quired. ii IA1"CLZ < 0, gttometry is
defined by (Y, '-) coordimavcs. If LJ\ULE
0, gju:merry is dcfincd by len'din, and trniling
edge s, 2cp :^n;'ieo2

YEX(1) Extra ;pan stations, for aero calcilarions



5 V 7n!.' DL-f ini t.;cn Units

X con int of the leading cdgec at YLE (T)

YLE(:7) Spa1 ,;Lation defiving leadinp edgi:*
braa:: Point.

XXT(J X coor,.inate of the trailinfg edve at YTF(J)

YTE(J) Spall SL;tion defining trailing edge break It
poirt

SWL (I)Leading,- ede-c~ -. ~c angle, Degrees
SI(n) is the sw~eep inboard of YLE(n).

S11Tk(j) SwccTp d-nfining trailin7 edge of planform Degrees
SW4T(n) is swieep in _ocrd of YTE(n).

DEL-Y Incrc._,t in y bet- ocn calculated s7oan*
stat-on; if left h1n~or nadc lcss than
0 .1 .: I t:--7: _ 1, . rj S t!t C 11; 1 to0
0. 1 - .2 -'.-

Y -A L"- T C: 7.iat 7 7ec rr (Isel)
2 t t' :'cj. *'ui t

7,1- C - c I -on

c R C T Root C*hord.*
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AY Spnwf tso curve fit boundaries; value is *
equal .. tha y valu of tho left boundary
of the respective span interval.

C Twist case only.; (J'hIIST -- and Radians/
N-SPAN-INTS = 1), = (,) JTWIST

NXi*T NuLber of chord ise curve fit intervals None
in a given span1i3e interval

NS PLP Number of span stations for c,, inputs None

El, Fl Coefficients of boundary between the *
first and second cnordwise ince:vals
where El + F1 (7)

E-, F] Coefficients of boundarv between the second
and thi;' chor:h.e inrcrvals 'J:ere
Y = E2 + F2 (y)

17 -1 Cooefficints of oundary ',ete:n.. the
third Lnd fcurth. cisr,;ise i:tervais
hfe :3 + ?3 (7)

N!N Nu:n.cr of izpue pairs of XC, z per 'None
sp:in ... r-r _C ' r curve-

fit iterva.l ccnsie;:ed

YI, 3 'hc L',A three span stations at -;hic.'. dta
is ,i*.,fn ;rr to~ [:.ZtiOubar ocu.vc-fit

inotrva being considercd

Facto- i nut o.. ' " icr this Y and None
tnis c:'-r:ise otnlrval cnly vil be multfnlicd.
No ued in value i0

X,'C Fraction of local chord None

Cx- Local angle of attack (for ITHICK = 1, Radians
01 = -d(t/2)/d:).

JCCNIC Curvefit option; if 70, slopes will be fitted
and intarpolated sne-.wise alonv constant fractions
of cut - -fit pa ,, l chord instead of w i .crd.
This option is chozen separately for each curve-
fit itt..:a!.

When an iniiatcr i 0, tha o.icn i3 not used, when it is 1, the option
i us . -, d.

1 ,.,-, " .tr:r . nural." be conister.t.
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4.0 INTERACTIVE PROGRAM CONTROL (GRAPHICS RObTINE)

4. 1 C-IIMAND SLMlMARY

For reasons of initial program portability, all program interaction is

handled through the keyboard. All commands are initiated by typing at least

trie tirst two characters of the command name. The routine will respond with a

promipter describing the additional information (if any) required to complete

t e com-mand. Commands fall into four categories:

* Di-play options

* Editing options

* Editing aids

* Output options

T,'w display options give the user control over the appearance of the

.isplay. uptions are available to view tne moodel Trom any angle, to

rw ' a.d view center of the display, to clip the uisplay tu a

-, r :nslor, view box, to display either- or 0oth sides of tile model, anu
- 0; ,_rctn and re-display the 1;oel.

olt:,", options alloq tne user to change trie title, move one or ilore

S',,Irrire trit corner coues, or to reject the effect ot the previous

-:1tI no ais allow the user to mark a number of points on the display with

--, nt numbers, or to display the coordinates and corner codes for one or
-i( rt points.

jutpt options include the ability to print or punch the current data set,

,- plot the display. The "plot" option currently just writes a vector file
,cn can .e processed by an external routine to route the information to an

i s~rlate plotting device. Two examples of the scope display are shown in

(in .
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4.2 DISPLAY COMMANDS

For display purposes, the complete model definition is stored as a single

vector list, in model coordinates. When the program calls for the aisplay of

the model, each vector is processed by the following transformations:

1) Translate with respect to a view center

2) Rotate through yaw, pitch and roll angles

3) Scale to a specified unit sphere

4) Clip to a specified three dimensional viewport

The remaining visible portion of each vector (if any) is displayed with

the X coordinate mapping onto the horizontal screen dimension ana the Z

coordinate mapping onto the screen vertical dimension.

The display options allow the user to specify the parameters useu in ttle

viewing transformations as well as to control re-displaying the imodel and to

select one or both sides of the model for display.

Since the user may wish to change several of the display paraweters before

re-displaying the picture, an optional display suppression flay i ,ay De input

following the last mentioned parameter. When any non-blank value is supplieu

for this flag, the picture will not be re-displayed until a further cormmiand

specifically requires it.

4.2.1 Translate

The program responds with "ENTER VIEW CENTER X, Y, Z". The user should

type the model coordinates of the point that will be translated to the center

of the screen.

4.2.2 Rotate

The program responds with "ENTER YAW, PITCH, RULL". The user should type

the values in degrees. The (0, 0, 0) orientation is the left profile.

Positive yaw is nose left. Positive pitch is nose up. Positive roll is right

side up.
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A convenient way to visualize a desired rotation is to image that the

viewer is initially located to the left side. First move around toward the
nose by the desired yaw angle. Then move the imaginary viewpoint through a

desired elevation angle. The pitch angle will be the negative of the

elevation angle and roll will be zero. The model can be viewed from any angle

with only two angles specified. Three rotation angles are necessary only to

control the orientation of the resulting view.

4.2.3 Scale

The program responds with "ENTER VIEWING RADIUS". The user enters a

radius, in model coordinates, that will be scaled to fit within a 12-incn

viewing area.

4.2.4 Clip

The program responds with "ENTER XMIN, YMIN, ZHIN, XiiAX, Y1,iAX, iA1X". Tne

values are in display coordinates (screen inches). (U, U, 0) is the screen

center. The following may aid in specifying tne values.

XMIN - Left side

YIIIN - "Near" side. Negative Y is toward the viewer

ZMIN - Bottom

XMAA - Right side

YMAX - "Back" side. Positive Y is benind tne screen

ZMAX - top

4.2.5 Side

This controls whether the program displays the left side (-Y), the right

side (+Y), or both sides of the model. Tne program responds "LLFT, RIUHT Uk

BOTH".

4.2.6 Paint

This causes the program to clear the screen ano re-display the picture.

This may be necessary because of an accumulation of commanO or output oata on

a Tektronix scope.
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4.3 EDITING AIDS

The commands are available to aid the user in identifying and locating

points on the display.

4.3.1 Mark

This command causes the program to show the point number of one or more

points on the display at the point location. This enables the user to

identify points in the configuration. The program responds with "ENTER POINT

RANGE". The user types in the first and last numbers to be marked. Once a

range of points has been marked, the command stays in effect through changes

of display until changed. To turn off the point marking, enter null print

range (0, 0 or only a space before the end-of-line).

4.3.2 Locate

The program responds "ENTER POINT RANGE". After the user types in the

first and last point of interest, the program will display the existing X, Y

and Z coordinates and the corner code for the specified points.

4.4 EDITING COMMANDS

Four commands are available that actually change the data set. These

allow the user to move points, change the corner codes, reject a previous

change, or change the title.

4.4.1 Move Points

The program responds "ENTER POINT RANGE, X, Y Z". The user enters the

first and last point to be moved (which may coincide) and the new point

coordinates for the first point of the range. All the points will then be

moved by the same increment as the first point. This allows an entire row or

group of rows to be moved as easily as a single point.
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4.4.2 Change Corners

The program responds "ENTER POINT RANGE AND NEW CORNER CODE". The user

enters the first and last point of interest and the new ten character point

type, which can include the regular point type field and/or the "V" indicator

for covered panels. Notice that the routine will not redefine rows or

sections with this command, only the slope discontinuity indicators are

changed.

4.4.3 Reject

This command retracts the effects of the previous MOVE or CHANGE cornmand.

No additional parameters are entered.

4.4.4 Title

The routine responds "TYPE IN FIRST LINE OF NEW TITLE" and then "TYPE IN

SECOND LINE OF N&, TITLE". Forty characters may be entered in each line.

4.5 OUTPUT COIfANDS

Three output options are available to allow the user to print or punch the

current data set, or to write a plot file.

4.5.1 Print

No other parameters are entered. The printed output represents the

current title, point and corner codes.

4.5.2 Punch

No other parameters are entered. The punch deck may be used for direct

input either to the graphics/editing routine or to the analysis routine later.
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4.5.3 Plot

No other parameters are entered. The routine writes a binary file

consisting of the current vector set and view transformation parameters for

use by an external batch routine to direct the required plot data to the

appropriate plotting equipment. If the vector set has not changed since the
previous plot was requested, only the new view parameters are written.

5.0 SAMPLE CASE

Printout for a sample case is shown in Figure 3. Included in the printout

is a side by side literal and interpreted print back of the fuselage input

data. If a wing is input, the print back is the interpreted type only. Next

is the panel geometry data resulting from the three dimensional splining.

Finally, the computed local pressures and velocities and the integrated forces

are printed.

6.0 SUbGESTIuIiS FUR INPUT PREPARATIUw

The most important recommendation is to always use the graphics routine to

check and edit the body geometry. This step nearly always uncovers one or

more errors in the input data or areas where the curve fit is not quite what

was desired.

In general, one should use the minimum number of points wnich adequately

describe the geometry. The only exception is in areas where it is apparent

that flow conditions will be varying rapidly due to asymmetry or local slope

variations. In areas where flow conditions are nearly constant, a panel can

span 30, 45, or even 90 degrees laterally. The panels should not span more

than 90 degrees because that could cause inaccuracy in the characteristic

tracing.

The body points are input from bottom to top, starting with the front

row. Although the input points are sequenced from bottom to top, the panels

are numbered from top to bottom and the results are printed in top to bottom

order. Each lateral spline fit extends from the bottom point to the first

lateral corner (CY) or the top point, and the next one to the next CY or the
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top point, whichever occurs first. Each longitudinal line is splined from the

first row in the section to the next longitudinal corner (CX or RX) or to the

last row in the section, etc. A curvature discontinuity (DX or DY) does not

interrupt the fit; it keeps the slope continuous but substitutes a constant

curvature condition in an adjacent segment instead of the equal curvature

condition across the point. Within each spline fit of more than two points

there must be at least one point at which the curvature is continuous.

The discontinuous curvature (DX or DY) option should be used when one

class of curve joins another with the slope continuous. An example is a

tangent ogive cylinder body shape. Curvature reversals also can occur at

Iccations where it is necessary to keep the slope continuous.

The covered panel (V) option should be used in most cases at the wing-body

intersection, particularly if a portion of the wing stub is defined as part of

the body, or if lateral corners with 600 are adjacent to the covered

panel.

A new section is required to change the nunber of input points per row or

to introduce an inlet-type step. At each new section, the spline fit starts

anew, and the slopes and ordinates may be different from those at the end of

the previous section.

Normally, the slope of the lateral spline fit is + 900 at the first and

last points in a row. If this is not desired, these points must have a CY

point type. Also, the first and last points in each lateral row must lie in

the plane of symmetry ( Y<10-6 x body length). All longitudinal lines

defining lateral boundaries of panels must have positive length C X > 2 x

10-6x body length).

The fore and aft panel boundaries (lateral input rows) have a maximum

slope limitation because of the marching scheme used to solve the non-linear

equations. The marching scheme requires that succeeding rows not have any

effect on the current row. Thus, the characteristics from the back of a row

must not trace out of the back of the row. This means that the lateral slope

must always be less than ,/r1t 21/./l + 2' where 11t is the true

local Mach number with a minimuil value of 1.1 and E is the streamwise surface

slope. To meet this requirement, all lateral lines should have a slope less

than 0.458/ /1 + 0-20
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When wing data are input, the airfoils can be defined by either of two

formats of area rule type input (airfoil ordinates) or by streamwise surface

slope input. When surface slope input is used, care must be taken with the

sign of the slope. The input is -1//2 dt/dx, so the sign is negative when the

thickness is increising, and positive when the thickness is decreasing.

A restart capability is available to prevent having to duplicate long

computations in cases such as encountering the CP time limit, a program bomb,

or to evaluate effects of goemetry changes near the aft end of the body. To

use this capability, the file TAPE8 must be saved from the initial

calculation. Then the calculations can be restarted at the beginning of any

row for which all preceding row calculations were completed. E.g., if the

initial calculation was completed through row 6, the case can be restarted at

any row from 2 through 7. The Mach number must be the same ana the geomietry

through the preceeding row must be unchanged. The program is signaled to use

the restart capability by reading the input Iach numbers anu finainy tne

second "Mach number" is . -2. The calculation starts at the 'n'th row if the

second "Mach number" is (-n). The old TAPE8 file must be attached to the job

with the local file name of TAPE8.

7.0 ARRAY LIIIS

a) NPANL 200, where NPANL = actual nuruer of panels + I extra idum.1y) per

row.

b) NROWS 20, where NROWS = numbers of rows of panels (is less than number

of input stations by the number of sections).

c) NPL 19, where NPL is the number of actual panels in any row.

d) NYDISC 33-NPL, where NYDISC is the number of Y, or lateral,

discontinuities in the row.

e) MLDSC 80, where MLDSC is the total number of Y (lateral) slope

discontinuities.

f) NSECS b, where NSECS is the number of sections.

g) Total number of input points 400.
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8.0 OUTPUT DATA FROM ANALYSIS ROUTINE

The output data consists of the following categories in order:

a. Date and time of run

b. Title cards

c. Body geometry input - literal and interpreted, side by side

d. Wing input data-interpreted-if used.

e. Reference area card, Mach numbers - interpreted

f. Summary of sections, rows, points

g. Wing-alone results - if applicable

h. Panel geoemetry

i. Body results

j. Results for wing with effect of body - if applicable

Only items (g) through (j) above will be discussed, because (a) through (f)

are self-explanatory.

The wing alone results include chordwise data at each span station and the

integrated drag coefficient of the wing based on the specified reference

area. The span stations (y's) are relative to the y of the root chord, RUTY.

At every 5% of the local chord, values of upper surface ordinate (Z/C) as a

fraction of local chord, local slope (ALP= -dz/dx) and pressure coefficient

(CPU) are printed. The CDC value is the local section drag coefficient times

the local chord, divided by the average chord of the exposed wing.

The panel geometry print gives geometric data on each panel at the four

corners and at the average x on each side of the panel. The RDD is a

curvature measure; i.e., the second derivative of radius with respect to X.

The ordinates X, Y and Z, the derivatives YU (dy/dx) and ZD (dz/dx), the

strea, wise SLOPE and the outward surface normal THETA are printed at each

point from the parametric cubic surface patch definitons. The analysis

routine uses a circular arc approximation at each X to the surface patch

defined shape. The 1/RADIUS and ARC-THETA are the reciprocal of the circular

arc radius and the 2, respectively, associated with the circular arc
approximation. Theta is the direction of the projection into an X = constant

plane of the local surface outward normal, and 2 0 is parallel to the

positive y axis.
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The body results print the calculated pressures and flow conditions at

each control point. Control point calculations are made at the beginning
(front) of the first row and for other rows when required due to

discontinuities. Control point calculations are always made at the middle and
back of each row. X, Y and Z are the ordinates of the control point. Control

points are located 20 percent of the panel width away from the side edges,

except at the leading edge of finite width panels where they are located 10

percent of the panel width away from the edge. THETA is the lateral outward

normal direction as defined previously; it is not a meridian angle except in

very simple cases. EPS is the local streamwise slope. CP is the pressure

coefficient. M-LOCL is the true local Mach number. PHIX, PHIL AND PHIN are

the perturbation velocity ratios to freesteam velocity in the X, lateral and

normal directions. PHIL is positive in the downward or increasing panel

number direction. V/VZ is the ratio of the total perturbed local velocity to
freestream velocity. S3-EDG is the source strength at the adjacent lateral

edge of the panel; this is the only printed value which does not correspond to

the control point location. BETA-C is the correlated . PHIY and PHIZ are

the perturbation velocity components in the Y and Z directions. Two

additional numbers may be printed at the right side of the page without

labels. The first one, which will include a decimal, is a total pressure
ratio which arose from a blunt nose or corner solution and is attenuated as

the solution marches aft. The second number is an integer and tells how many
iterations were computed for the point or group of points. The maximum nuiber

of iterations allowed is five. When calculations for a row are completed, the

contributions of each panel (one side only) to drag, lift and pitching moment

are printed (DEL-CD, DEL-CL, DEL-CM). Then the total drag, lift and moment

coefficients for both sides of the configuration and summed over all completed

rows are printed as CD, CL and CM.

The results for wing with the effect of the body are in the same format as

the wing-alone results described previously, and are printed after all body

results are listed.

9.0 RESOURCE REQUIREMENTS

The central processor time per Mach number presently varies from I to 15

seconds per panel on a CDC 6600. If the input geometry is axisymmetric, the
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routine only calculates one solution per streanwise location and assigns the

resulting pressures to all lateral panel points, thus significantly reducing

the computations required. Approximately 200,0003 words of memory are

required for the analysis routine with segmentation.
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